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Abstract. An ambiguity inherent in the partial integration procedure leading to the Bern-Kosower rules
is fixed in a way which preserves the complete permutation symmetry in the scattering states. This leads
to a canonical version of the Bern-Kosower representation for the one-loop N -photon/gluon amplitudes,
and to a natural decomposition of those amplitudes into permutation symmetric gauge invariant partial
amplitudes. This decomposition exhibits a simple recursive structure.

1 Introduction:
The Bern-Kosower master formula

In recent years it has been found that string theory can
serve as a guiding principle for the derivation of useful
and non-trivial rearrangements in standard perturbative
quantum field theory. While such string-related techniques
have been applied to a large variety of field theory prob-
lems [1–18] the primary example is still the case of the one-
loop N -photon or gluon amplitudes. A recipe for the con-
struction of this amplitude is given by the “Bern-Kosower
Rules”, which originally were derived by an analysis of
the infinite string tension limit of the corresponding am-
plitude in an appropriate string model [1–3] (see [19] for a
review). A simpler derivation of the same rules was later
given by Strassler in the so-called world line path integral
formalism [7–10,13–17,20] (see [21] for an introductory
exposition). In this approach one represents one-loop ef-
fective actions in standard quantum field theory in terms
of certain first-quantized particle path integrals, and eval-
uates those in a way analogous to the calculation of the
Polyakov path integral in string theory. The path integral
relevant for the N -photon/gluon amplitude is the follow-
ing [22,7]

Γ [A] = tr
∫ ∞

0

dT

T
e−m2T

×
∫

DxPexp

[
−

∫ T

0
dτ

(
1
4
ẋ2 + igAµẋµ

)]
(1)
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This formula expresses the one-loop effective action in-
duced by a (complex) scalar loop with mass m for a Yang-
Mills background field in terms of a quantum mechanical
path integral. At fixed Schwinger proper-time T , the path
integral is to be performed over the space of trajectories
obeying x(T ) = x(0). tr denotes the global colour trace,
and P the path-ordering of the exponential (those can be
omitted in the abelian case). We use Euclidean conven-
tions. Similar path integral representations exist for the
fermion loop [23–25] and gluon loop [7,17] contributions
to this amplitude.

The N -point amplitude can be extracted from this
path integral by expanding the interaction term to N -th
order, and then specializing to a background consisting of
plane waves carrying definite polarizations εi and gauge
algebra generators T ai . Introducing the string theoretic
photon (gluon) vertex operator

Vi = (T ai)
∫ T

0
dτi εi · ẋ(τi)eiki·x(τi) (2)

the result can be written as (for the gluon case)

Γ a1...aN [k1, ε1; . . . ; kN , εN ]

= (−ig)N tr
∫ ∞

0

dT

T
e−m2T

∫
Dx(τ)V1V2 · · ·VN

×δ(
τN

T
)

N−1∏
i=1

θ(τi − τi+1)exp

[
−

∫ T

0
dτ

1
4
ẋ2

]
(3)

Here the zero on the loop has been fixed to be at the loca-
tion of the N -th vertex operator. The functions θ(τi−τi+1)
implement the path ordering = colour ordering which one
has in the non-Abelian case. This path integral is Gaus-
sian, so that its evaluation can be done simply by “com-
pleting the square”. To get an invertible kinetic term, first
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one extracts the zero mode x0 ≡ 1
T

∫ T

0 dτx(τ) from the
path integral. The integral over x0 is separated off, and
just produces the usual energy-momentum conservation
factor. The remaining path integral is then performed us-
ing the worldline Green’s function

GB(τ1, τ2) =| τ1 − τ2 | − (τ1 − τ2)
2

T
(4)

Rewriting

εi · ẋieiki·xi = eεi·ẋi+iki·xi |lin(εi) (5)

one arrives at the following master formula for the scalar
loop contribution to the one-loop N -gluon amplitude,

Γ a1...aN [k1, ε1; . . . ; kN , εN ]

= (−ig)N tr(T a1 · · ·T aN )(2π)D
δ(

∑
ki)

×
∫ ∞

0

dT

T
[4πT ]−

D
2 e−m2T

×
N∏

i=1

∫ T

0
dτi δ(

τN

T
)

N−1∏
i=1

θ(τi − τi+1)

× exp
{ N∑

i,j=1

[1
2
GBijki · kj − iĠBijεi · kj

+
1
2
G̈Bijεi · εj

]}
|multi−linear (6)

Here it is understood that only the terms linear in all the
ε1, . . . , εN have to be taken. Besides the Green’s function
GB also its first and second derivatives appear,

ĠB(τ1, τ2)=sign(τ1 − τ2) − 2
(τ1 − τ2)

T

G̈B(τ1, τ2)=2δ(τ1 − τ2) − 2
T

(7)

Dots generally denote a derivative acting on the first vari-
able, ĠB(τ1, τ2) ≡ ∂

∂τ1
GB(τ1, τ2), and we abbreviate GBij

≡ GB(τi, τj) etc.
Writing out the exponential in (6) one obtains an in-

tegrand

exp
{

·
}

|multi−linear=(−i)N
PN (ĠBij , G̈Bij)

× exp
[
1
2

N∑
i,j=1

GBijki · kj

]
(8)

with a certain polynomial PN depending on the various
ĠBij , G̈Bij and on the kinematic invariants. The resulting
parameter integrals are directly related to the ones aris-
ing in a standard Feynman parameter calculation of this
amplitude [26,7,27]. The exponential factor in particular
will, after performance of the global T -integration, turn
into the standard one-loop N -point Feynman denomina-
tor polynomial. To arrive at the Bern-Kosower rules, one

now has to remove all second derivatives G̈Bij appearing
in PN by suitable partial integrations in the variables τi,

PN (ĠBij , G̈Bij)e
1
2

∑
GBijki·kj

part.int.−→ QN (ĠBij)e
1
2

∑
GBijki·kj (9)

That this is possible for any N was proven in appendix B
of [2]. The new integrand is written in terms of the GBij

and ĠBij alone, and serves as the input for the Bern-
Kosower rules1. Those allow one to classify the various
contributions to the N -photon/gluon amplitude in terms
of φ3-diagrams, and moreover lead to simple relations be-
tween the integrands for the scalar, spinor and gluon loop
cases. A complete formulation of the rules is lengthy, and
we refer the reader to [3,19]. Let us just remark that, up
to global factors correcting for the differences in degrees
of freedom and statistics, the integrand for the spinor loop
case can be obtained from the one for the scalar loop sim-
ply by replacing every closed cycle of ĠB ’s appearing in
QN by its “supersymmetrization”,

ĠBi1i2ĠBi2i3 · · ·ĠBini1 → ĠBi1i2ĠBi2i3 · · · ĠBini1

−GFi1i2GFi2i3 · · ·GFini1 (10)

where GF12 = sign(τ1−τ2) denotes the fermionic worldline
Green’s function. Note that an expression is considered a
cycle already if it can be put into cycle form using the
antisymmetry of ĠB (e.g. ĠB12ĠB12 = −ĠB12ĠB21). A
similar “cycle replacement rule” holds for the gluon loop
case.

Our objective in this paper is a further investigation
of the partial integration procedure, and of the structure
of the polynomial QN .

2 The N = 4 ambiguity
and symmetric partial integration

We begin with the two-point amplitude. For N = 2 (8)
yields

P2 = ĠB12ε1 · k2ĠB21ε2 · k1 − G̈B12ε1 · ε2 (11)

After a partial integration performed on the second term
in τ1 or τ2 this turns into

Q2 =
[
ε1 · k2ε2 · k1 − ε1 · ε2k1 · k2

]
ĠB12ĠB21 (12)

We note the following two effects of this partial integra-
tion:

1. The new Feynman numerator polynomial is a function
of ĠB12, and homogeneous in the external momenta
ki.

2. A transversal projector has appeared, making the
gauge invariance manifest at the integrand level.

1 We refer to the original version of these rules as given in [3,
19]. Depending on the purpose it can be preferable to proceed
directly from (6) [19]
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In the three-point case one finds

P3=ĠB1iε1 · kiĠB2jε2 · kjĠB3kε3 · kk

−
[
G̈B12ε1 · ε2ĠB3iε3 · ki + 2 permuted terms

]
(13)

Here and in the following the dummy indices i, j, k should
be summed over from 1 to N , and one has ĠBii = 0 by
antisymmetry. Removing all the G̈Bij ’s by partial integra-
tions one finds

Q3=ĠB1iε1 · kiĠB2jε2 · kjĠB3kε3 · kk +
1
2

{
ĠB12ε1

·ε2

[
ĠB3iε3 · ki

(
ĠB1jk1 · kj − ĠB2jk2 · kj

)
+

(
ĠB31ε3 · k1 − ĠB32ε3 · k2

)
ĠB3jk3 · kj

]

+2 perm.

}
= Q3

3 + Q2
3 (14)

where

Q3
3=ĠB12ĠB23ĠB31Z3(123)

Q2
3=ĠB12ĠB21Z2(12)ĠB3iε3 · ki + 2 perm. (15)

We have now introduced the notation

Z2(ij)≡εi · kjεj · ki − εi · εjki · kj

Zn(i1i2 . . . in)≡tr
n∏

j=1

[
kij

⊗ εij
− εij

⊗ kij

]
(n ≥ 3) (16)

for the cyclically invariant Lorentz traces which appear
in the result. Zn corresponds to a tr[Fn] in the (abelian)
effective action, and after the partial integration procedure
appears multiplied by a factor of ĠBi1i2ĠBi2i3 · · · ĠBini1 ,
independently of the algorithm used [8]. The “τ -cycles”
appearing in the Bern-Kosower substitution rules are thus
associated to the “Lorentz cycles”.

In the abelian case the three photon amplitude must
vanish by Furry’s theorem. To verify that this is indeed
the case note that the integrand is odd under the trans-
formation of variables τi = T − τ ′

i , i = 1, 2, 3, since

GB(τi, τj) = GB(τ ′
i , τ

′
j), ĠB(τi, τj) = −ĠB(τ ′

i , τ
′
j) (17)

In the three-point case, Q3 is still unique; all possible ways
of performing the partial integrations lead to the same
result. The same is not true any more in the four-point
case, where the result of the partial integration procedure
turns out to depend on the specific chain of partial inte-
grations chosen. This ambiguity was discussed in [8], and
the question asked whether some particular algorithm ex-
ists which would not single out any of the variables τi, and
thus preserve the full permutation symmetry between the
N external legs.

We will now define such an “impartial” partial inte-
gration algorithm, in the following way:

1. In every step, partially integrate away all G̈Bij ’s ap-
pearing in the term under inspection simultaneously.
This is possible since different G̈Bij ’s do not share vari-
ables to being with, and this property is preserved by
all partial integrations. New G̈Bij ’s may be created.

2. In the first step, for every G̈Bij partially integrate both
over τi and τj , and take the mean of the results.

3. At every following step, any G̈Bij appearing must have
been created in the previous step. Therefore either
both i and j were partially integrated over in the pre-
vious step, or just one of them. If both, the rule is to
again use both variables in the actual step for partial
integration, and take the mean of the results. If only
one of them was used in the previous step, then the
other one should be used in the actual step.

For example, the term G̈B12G̈B34 appearing in P4 in the
first step transforms as follows,

G̈B12G̈B34→1
4
ĠB12ĠB34

{[
ĠB1ik1 · ki − ĠB2ik2 · ki

]
×

[
ĠB3jk3 · kj − ĠB4jk4 · kj

]
−G̈B13k1 · k3 + G̈B14k1 · k4

+G̈B23k2 · k3 − G̈B24k2 · k4

}
(18)

The terms containing a G̈B have to be further processed.
Considering just the first one of them, since both variables
appearing in G̈B13 were active in the first step, both must
also be used in the second one. This yields

−1
4
ĠB12ĠB34G̈B13

→ 1
8
ĠB12ĠB34ĠB13

[
ĠB1ik1 · ki − ĠB3ik3 · ki

]
+

1
8
ĠB13

[
G̈B12ĠB34 − ĠB12G̈B34

]
(19)

Considering again the first term in the second line, only
τ1 was active in the previous step. Therefore only τ2 must
be used now, and the third step is the final one,

1
8
ĠB13G̈B12ĠB34 → 1

8
ĠB13ĠB12ĠB34ĠB2ik2 · ki (20)

This prescription treats all variables on the same foot-
ing, and therefore must lead to a permutation symmetric
result. The nontrivial fact is that the process terminates
after a finite number of steps, and does not become cyclic
(as would be the case if, for example, one would always
treat the indices in a G̈Bij symmetrically). This is not dif-
ficult to derive from the fact that, for any term in PN , the
indices appearing in the G̈Bij ’s and the first indices of the
ĠBij ’s are associated to the polarization vectors, and thus
must all take different values.

This algorithm transforms P4 into

Q4=ĠB1iε1 · kiĠB2jε2 · kjĠB3kε3 · kkĠB4lε4 · kl

+

{
1
2
ĠB12ε1 · ε2

{
ĠB3iε3 · kiĠB4jε4 · kj
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×
[
ĠB1kk1 · kk − ĠB2kk2 · kk

]
+

[
ĠB3iε3 · ki

(
ĠB41ε4 · k1 − ĠB42ε4 · k2

)
×ĠB4kk4 · kk +

(
3 ↔ 4)

]
+

[(
ĠB31ε3 · k1 − ĠB32ε3 · k2

)
ĠB43ε4

·k3ĠB4kk4 · kk +
(
3 ↔ 4)

]}
+ 5 permutations

}

+

{
1
4
ĠB12ĠB34ε1 · ε2ε3 · ε4

{[
ĠB1ik1 · ki

−ĠB2ik2 · ki

][
ĠB3jk3 · kj − ĠB4jk4 · kj

]
+

1
2

[
ĠB13k1 · k3 − ĠB23k2 · k3 − ĠB14k1 · k4

+ĠB24k2 · k4

] [
ĠB1ik1 · ki + ĠB2ik2 · ki

−ĠB3ik3 · ki − ĠB4ik4 · ki

]}
+ 2 perm.

}
(21)

This expression can be rewritten more compactly as fol-
lows,

Q4 = Q4
4 + Q3

4 + Q2
4 − Q22

4 (22)

where

Q4
4=ĠB12ĠB23ĠB34ĠB41Z4(1234) + 2 permutations

Q3
4=ĠB12ĠB23ĠB31Z3(123)ĠB4iε4 · ki + 3 perm.

Q2
4=ĠB12ĠB21Z2(12)

{
ĠB3iε3 · kiĠB4jε4 · kj

+
1
2
ĠB34ε3 · ε4

[
ĠB3ik3 · ki − ĠB4ik4 · ki

]}
+ 5 perm.

Q22
4 =ĠB12ĠB21Z2(12)ĠB34ĠB43Z2(34) + 2 perm. (23)

This decomposition according to cycles is not only neces-
sary for the application of the Bern-Kosower substitution
rules, but also natural in terms of gauge invariance. The
sixteen terms appearing in this decomposition are individ-
ually gauge invariant, i.e. they either vanish or turn into
total derivatives if the replacement εi → ki is made for
any of the external legs. This is trivial for Q4

4, Q
22
4 , and

also for Q3
4, since if we substitute k4 for ε4 there (in the

un-permuted term) we have a total derivative at hand,

∂4

[
ĠB12ĠB23ĠB31e

1
2 GBijki·kj

]

The only not quite trivial case is a replacement of ε3 or ε4
in (the un-permuted term of) Q2

4. By inspection one finds
that the replacement ε3 → k3 yields the total derivative

∂3

[
ĠB12ĠB21Z2(12)ĠB4jε4 · kj e

1
2 GBijki·kj

]

+
1
2
(∂3 − ∂4)

[
ĠB12ĠB21Z2(12)ĠB34k3 · ε4 e(·)

]
(24)

and analogously for ε4. Note that the product of two-
cycles Q22

4 appears with a minus sign in (22). The reason
is that we corrected for an over-counting here; Q22

4 is also
contained twice in Q2

4, and separating it out from there
will change the “-” to a “+”.

3 Higher orders

Before proceeding to higher point amplitudes, let us fur-
ther condense the notation. We thus abbreviate

Ġij≡ĠBijεi · kj

Ġij≡ĠBijεi · εj

Ġ/ij≡ĠBijki · kj

Ġ(i1i2 . . . in)≡ĠBi1i2ĠBi2i3 · · · ĠBini1Zn(i1i2 . . . in) (25)

As was mentioned before, it is known from previous
work [2,3,8] that a closed “τ -cycle” ĠBi1i2ĠBi2i3 · · · ĠBini1
after the partial integration will always appear multiplied
by a complete factor of Zn(i1i2 . . . in). This motivates the
last one of the abbreviations above, and also explains why
the formulation of the “cycle substitution” part of the
Bern-Kosower rules did not require the specification of a
particular partial integration algorithm.

A given term in QN thus will be a product of “complete
cycles” Ġ(·), multiplied by a remainder. Following [8] we
call this remainder “tail”, or “m-tail”, where m denotes
the number of indices not appearing in any of the cycles.
For example, Q2

4 is the product of a complete 2-cycle and
a 2-tail. Only the tails depend on the choice of the partial
integration algorithm. The tail generated by our specific
symmetric algorithm will be denoted by Tm(i1 . . . im). The
1-tail is (unambiguously) given by T1(i) = Ġij (i being
fixed and j summed over).

With the above abbreviations, the result for Q5 ob-
tained by an application of the symmetric algorithm can
be written as follows,

Q5 = Q5
5 + Q4

5 + Q3
5 + Q2

5 − Q32
5 − Q22

5 (26)

where

Q5
5=Ġ(12345) + 11 permutations

Q4
5=Ġ(1234)Ġ5i + 14 perm.

Q3
5=Ġ(123)

{
Ġ4iĠ5j +

1
2
Ġ45

[
Ġ/4i − Ġ/5i

]}
+ 9 perm.

Q2
5=Ġ(12)

{
Ġ3iĠ4jĠ5k +

1
2
Ġ34

×
[
Ġ5k

[
Ġ/3i − Ġ/4i

]
+ Ġ/5i

[
Ġ53 − Ġ54

]]

+
1
2
Ġ35

[
Ġ4k

[
Ġ/3i − Ġ/5i

]
+ Ġ/4i

[
Ġ43 − Ġ45

]]

+
1
2
Ġ45

[
Ġ3k

[
Ġ/4i − Ġ/5i

]
+ Ġ/3i

[
Ġ34 − Ġ35

]]}
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+9 perm.

Q32
5 =Ġ(123)Ġ(45) + 9 perm.

Q22
5 =Ġ(12)Ġ(34)Ġ5i + 14 perm. (27)

Again we have an over-counting here; Q32
5 is contained

once in both Q3
5 and Q2

5, and Q22
5 is contained twice in Q2

5.
And again every term appearing in this decomposition is
separately gauge invariant. Let us consider only the least
trivial case, which is a replacement of, say, ε3 by k3 in
(the un-permuted term of) Q2

5. This leads to the following
total derivative,

∂3

[
Ġ(12)Ġ4jĠ5ke

1
2 GBijki·kj

]
+

1
2
(∂3 − ∂4)

[
Ġ(12)Ġ34Ġ5ke(·)

]
+

1
2
(∂3 − ∂5)

[
Ġ(12)Ġ35Ġ4ke(·)

]
+

1
2
∂5

[
Ġ(12)Ġ34

(
Ġ53 − Ġ54

)
e(·)

]
+

1
2
∂4

[
Ġ(12)Ġ35

(
Ġ43 − Ġ45

)
e(·)

]
+

1
2
∂3

[
Ġ(12)Ġ45

(
Ġ/4i − Ġ/5i + Ġ34 − Ġ35

)
e(·)

]
(28)

Comparing the 2- and 3-tails appearing in (26) with
our results for N = 2, 3 we note that there is a simple
relation between T2, T3 and Q2, Q3. The tail Ti can be
obtained from Qi, in its un-decomposed form, by rewriting
Qi in the tail variables, and then extending the range of all
dummy indices to run over the complete set of variables
τ1, . . . , τ5.

It is not difficult to see that this relation generalizes to
an arbitrary Qm, Tm. Consider (the unpermuted term of)
Q2

N , which has a 2-cycle Ġ(12) and a tail TN−2(3 . . . N). It
suffices to consider those terms in QN having a ε1 ·k2ε2 ·k1
as their Z2(12)-component. From the master formula (6)
one infers that for this part of Q2

N the partial integration
procedure can have involved only partial integrations over
the tail variables τ3, . . . , τN . Thus the calculation of TN−2
and the lower order calculation of QN−2 are identical as
far as the tail indices are concerned. The presence of the
cycle variables for the tail makes itself felt only through an
extension of the momentum sums in the master formula,
leading to the stated extension rule for dummy indices.
The same type of argument shows that the structure of
Tm does not depend on the number and length of the
cycles it multiplies.

At this point it should be noted that every term in QN

must have at least one cycle factor (this is a combinatorial
consequence of the fact that each such term contains a
total of 2N indices, of which only N are different). Thus
the maximal tail occurring in QN has length N − 2. The
above connection between TN and QN thus allows us to
write down, without going through the partial integration
procedure again, Q6 as follows,

Q6=Q6
6 + Q5

6 + Q4
6 + Q3

6 + Q2
6

−Q42
6 − Q33

6 − Q32
6 − Q22

6 + Q222
6 (29)

where

Q6
6=Ġ(123456) + permutations

(5!
2

= 60 in total
)

Q5
6=Ġ(12345)T1(6) + perm.

(4!
2

(
6
1

)
= 72 in total

)
Q4

6=Ġ(1234)T2(56) + perm.
(
45 in total

)
Q3

6=Ġ(123)T3(456) + perm.
(
20 in total

)
Q2

6=Ġ(12)T4(3456) + perm.
(
15 in total

)
Q42

6 =Ġ(1234)Ġ(56) + perm.
(
45 in total

)
Q33

6 =Ġ(123)Ġ(456) + perm.
(
10 in total

)
Q32

6 =Ġ(123)Ġ(45)T1(6) + perm.
(
60 in total

)
Q22

6 =Ġ(12)Ġ(34)T2(56) + perm.
(
45 in total

)
Q222

6 =Ġ(12)Ġ(34)Ġ(56) + perm.
(
15 in total

)
(30)

Here the only new ingredient, T4, according to the above
is related to the un-decomposed Q4 of (21) simply by a
relabelling, and an extension of the range of all dummy
indices to run from 1 to 6.

Note that the integrand is not yet quite suitable for the
application of the cycle substitution rules, since the tails
still contain cycles. For this purpose, one should further
rewrite Q6 as

Q6=Q̂6
6 + Q̂5

6 + Q̂4
6 + Q̂3

6 + Q̂2
6

+Q̂42
6 + Q̂33

6 + Q̂32
6 + Q̂22

6 + Q̂222
6 (31)

where the “hat” on a term means that the range of the
dummy indices appearing in its tail has been restricted so
as to eliminate all additional cycles. This also removes the
over-counting, so that now all coefficients are unity.

It is now obvious that in this way one arrives at a
canonical permutation symmetric version of the Bern-
Kosower integrand for the one-loop N -photon/gluon am-
plitude. Moreover, this integrand naturally decomposes
into gauge invariant partial amplitudes. To see the gauge
invariance, note that at every step of the recursion only
one new structure appears in QN , namely TN−2. The sep-
arate gauge invariance of all terms except Q2

N can be
inferred from the gauge invariance of lower order terms,
since the total length of the cycles multiplying a given tail
is clearly not relevant for this analysis. Since the complete
integrand must be gauge invariant so must be Q2

N .
In the abelian case, the final parameter integral gives

the complete N -photon amplitude “in one piece”,

Γ [k1, ε1; . . . ; kN , εN ]

= (−g)N (2π)D
δ(

∑
ki)

∫ ∞

0

dT

T
[4πT ]−

D
2 e−m2T

×
N∏

i=1

∫ T

0
dτi QN (ĠBij) exp

{ N∑
i<j=1

GBijki · kj

}
(32)

with no need to add permuted terms.
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In the non-Abelian case the integration region is re-
stricted by the colour ordering as in (6), so that one must
explicitly sum over all non-cyclic permutations of the N
gluons. Moreover, additional boundary contributions are
generated in the partial integration process. Those corre-
spond to the “tree part” of the Bern-Kosower rules, and
in the effective action picture merely contribute to the co-
variantization of the main term [8]. To low orders it is eas-
ily verified that their contributions are given by integrals
which are already known from lower-point calculations.

4 Conclusions

We expect the above construction of the Bern-Kosower
integrand to be useful in future applications of the Bern-
Kosower formalism beyond the on-shell five-gluon ampli-
tude calculation of [4]. One possible application is the cal-
culation of the QED four-photon amplitude with all four
legs off-shell, which has not yet been done to the knowl-
edge of the author. The gauge structure of the four-photon
amplitude was analyzed in [28], however there the decom-
position into gauge invariant partial amplitudes required
an explicit solution of the Ward identities, and the result
is not identical with the one reached here. The correspond-
ing analysis for the higher point amplitudes seems not yet
to have been done in field theory. As we have seen, in
the present formalism a decomposition into permutation
symmetric gauge invariant partial amplitudes is generated
automatically if one groups the terms appearing in the fi-
nal integrand according to their cycle content. Note also
that the partial integration procedure makes the ultravi-
olet finiteness of the four-photon amplitude manifest at
the integrand level, since in contrast to P4 all terms in Q4
have already four external momenta factored out.

The main motivation for the present investigation was,
however, its potential usefulness for multiloop calculations.
Equations (6) and (32) are valid off-shell2, and thus can be
used as a starting point for the construction of QED [10,
17] or QCD [16] multiloop amplitudes. In the abelian case
this procedure leads to parameter integrals which combine
the contributions to the photon S-matrix of all Feynman
diagrams with a single scalar/spinor loop, and fixed num-
bers of external and internal photons [10,17]. In diagram-
matic terms the partial integration procedure then effec-
tively induces an intricate re-shuffling of terms between
numbers of diagrams of various topologies, obliterating
the initial connection to standard Feynman parameter in-
tegrals. A preliminary study indicates that the particular
properties of the canonical integrand lead to significant
calculational advantages over previous work by the au-
thor and his collaborators on QED multiloop integration
as reported in [10,29]. In particular, the gauge invariant
decomposition much facilitates the study of the gauge pa-

2 The off-shellness was not obvious in the original derivation
of the Bern-Kosower master formula, since for the initial string
amplitudes the requirement of conformal invariance forces the
external states to be on-shell

rameter dependence of the multiloop integrands. This will
be discussed elsewhere.
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